1.  Pauli matrices-Rotations-Special Unitary matrices $\:\mathrm{SU}(2)\:$
Any vector in  $\mathbb{R}^3$ can be represented by a $2\times2$ hermitian traceless matrix and vice versa. So, there exists a bijection (one-to-one and onto correspondence) between $\mathbb{R}^3$ and the space of  $2\times2$  hermitian traceless matrices, let it be $\mathbb{H}$ :
\begin{equation}
   \mathbf{x}=(x_1,x_2,x_3)\in \mathbb{R}^3\;\longleftrightarrow \; X= 
   \begin{bmatrix}         
         &       x_3         &   x_1-ix_2  \\
         &   x_1+ix_2   &       -x_3 
   \end{bmatrix}
       \in \mathbb{H}      
 \tag{001}
\end{equation}
From the usual basis of  $\mathbb{R}^3$
\begin{equation}  
 \mathbf{e}_{1}=\left(1,0,0\right),\quad \mathbf{e}_{2}=\left(0,1,0\right),\quad \mathbf{e}_{3}=\left(0,0,1\right)
  \tag{002}
\end{equation}
we construct  a basis for $\mathbb{H}$
\begin{eqnarray}
   \mathbf{e}_1 &=&(1,0,0)\qquad \longleftrightarrow \qquad \sigma_1= 
   \begin{bmatrix}         
         &0&1&\\
         &1&0&
   \end{bmatrix}
  \tag{003a}\\
   \mathbf{e}_2 &=&(0,1,0)\qquad \longleftrightarrow \qquad \sigma_2= 
   \begin{bmatrix}         
         &0&-i\\
         &i&0
   \end{bmatrix}
  \tag{003b}\\
   \mathbf{e}_3 &=&(0,0,1)\qquad \longleftrightarrow \qquad \sigma_3= 
   \begin{bmatrix}         
         &1&0\\
         &0&-1
   \end{bmatrix}     
  \tag{003c}
\end{eqnarray}
where $\:\boldsymbol{\sigma}\equiv(\sigma_{1},\sigma_{2},\sigma_{3})\:$ the Pauli matrices(1), essentially the components of the spin $\:s=1/2\:$ angular momentum by a factor   $\:1/2\:$
\begin{equation}  
  S_1=\dfrac{1}{2}\sigma_{1}\;, \quad S_2=\dfrac{1}{2}\sigma_{2}\;, \quad  S_3=\dfrac{1}{2}\sigma_{3}, \quad \text{or}  \quad \mathbf{S}=\dfrac{1}{2}\boldsymbol{\sigma}
\tag{004}
\end{equation}
Suppose now that the vector $\:\mathbf{x}=(x_1,x_2,x_3)\:$ is rotated around an axis with unit vector $\:\mathbf{n}=(n_1,n_2,n_3)$ through an angle $\theta$(2)
\begin{equation}
\mathbf{x}^{\prime}= \cos\theta \;\mathbf{x}+(1-\cos\theta)\;(\mathbf{n}\boldsymbol{\cdot}\mathbf{x})\;\mathbf{n}+\sin\theta\;(\mathbf{n}\boldsymbol{\times}\mathbf{x})
\tag{005}
\end{equation}
and let to the vectors  $\:\mathbf{x},\mathbf{x}^{\prime}\:$  correspond the matrices
\begin{eqnarray}
   X & \equiv & \mathbf{x}\boldsymbol{\cdot} \boldsymbol{\sigma} = x_1\sigma_1+x_2\sigma_2+x_3\sigma_3=
   \begin{bmatrix}         
         x_3&x_1-ix_2\\
         x_1+ix_2&-x_3
   \end{bmatrix}
 \tag{006a}\\
   X{'} & \equiv & \mathbf{x}{'}\boldsymbol{\cdot} \boldsymbol{\sigma} = x_1^{'}\sigma_1+x_2^{'}\sigma_2+x_3^{'}\sigma_3=
   \begin{bmatrix}         
         x^{'}_3&x^{'}_1-ix^{'}_2\\
         x^{'}_1+ix^{'}_2&-x^{'}_3
   \end{bmatrix}
 \tag{006b}
\end{eqnarray}
Taking the inner product of equation (005) with $\boldsymbol{\sigma}$
\begin{equation}
      (\mathbf{x}{'}\boldsymbol{\cdot}\boldsymbol{\sigma}) = \cos\theta(\mathbf{x}\boldsymbol{\cdot}\boldsymbol{\sigma})+(1-\cos\theta)(\mathbf{n}\boldsymbol{\cdot}\mathbf{x})(\mathbf{n}\boldsymbol{\cdot}\boldsymbol{\sigma})+\sin\theta[(\mathbf{n}\boldsymbol{\times}\mathbf{x})\boldsymbol{\cdot}\boldsymbol{\sigma})]
\tag{007}
\end{equation}
we have
\begin{equation}
       X{'} = \cos\theta \;X+(1-\cos\theta)(\mathbf{n}\boldsymbol{\cdot}\mathbf{x})N+\sin\theta[(\mathbf{n}\boldsymbol{\times}\mathbf{x})\boldsymbol{\cdot}\boldsymbol{\sigma})]
\tag{008}
\end{equation}
where
\begin{equation}     
   N \equiv \mathbf{n}\boldsymbol{\cdot}\boldsymbol{\sigma}=
    \begin{bmatrix}         
         n_3&n_1-in_2\\
         n_1+in_2&-n_3
    \end{bmatrix}
\tag{009}
\end{equation}
After a not so easy elaboration equation (008) turns to be
\begin{equation}
   X{'}=\left[I\cos\frac{\theta}{2}-i(\mathbf{n}   \boldsymbol{\cdot}   \boldsymbol{\sigma})\sin\frac{\theta}{2} \right]\;X\;\left[I\cos\frac{\theta}{2}+i(\mathbf{n}\boldsymbol{\cdot}\boldsymbol{\sigma})\sin\frac{\theta}{2} \right]   
\tag{010}
\end{equation}
and in compact form
\begin{equation}
   X{'}=U\;X\;U^{\boldsymbol{*}}
\tag{011}
\end{equation}
where
\begin{equation}
U\equiv \cos\frac{\theta}{2}-i(\mathbf{n}   \boldsymbol{\cdot}  \boldsymbol{\sigma})\sin\frac{\theta}{2}
\tag{012}
\end{equation}
with hermitian conjugate
\begin{equation}
   U^{\boldsymbol{*}}=I\cos\frac{\theta}{2}+i(\mathbf{n}  \boldsymbol{\cdot}   \boldsymbol{\sigma})\sin\frac{\theta}{2}    
\tag{013}
\end{equation} 
We choose the $2 \times 2$ complex matrix $U$ to represent the rotation (005). 
Now, because of the identity 
\begin{equation}
 (\mathbf{n} \boldsymbol{\cdot} \boldsymbol{\sigma})^2=\left\|\mathbf{n}\right\|^{2} I=I
\tag{014}
\end{equation} 
we have
\begin{equation}
   UU^{\boldsymbol{*}}=I=U^{\boldsymbol{*}}U    
\tag{015}
\end{equation}
Operators with this property are called unitary operators, symbol $\:\mathrm{U}(2)\:$ for our case, and in general $\:\mathrm{U}(n)\:$ for $n \times n$ complex matrices. Any unitary matrix $\:U\:$ has as determinant a unit complex number $\:\det(U)=e^{i\phi}, \phi \in \mathbb{R}\:$.
An explicit expression of  $U$ in (012)  is
\begin{equation}
U=
     \begin{bmatrix}
       \cos\frac{\theta}{2}-i\sin\frac{\theta}{2}n_{3} & & -\sin\frac{\theta}{2}\left( n_{2}+in_{1}\right) \\
       \sin\frac{\theta}{2}\left( n_{2}-in_{1}\right)     & & \cos\frac{\theta}{2}+i\sin\frac{\theta}{2}n_{3}
  \end{bmatrix}
  = 
  \begin{bmatrix}
  \alpha  & \beta  \\
  -\beta^{\boldsymbol{*}} & \alpha^{\boldsymbol{*}} 
  \end{bmatrix}
\tag{016}
\end{equation}
where here
\begin{equation}
  \alpha =\cos\frac{\theta}{2}-i\sin\frac{\theta}{2}n_{3} \qquad \beta=-\sin\frac{\theta}{2}\left( n_{2}+in_{1}\right)
\tag{017} 
\end{equation}
but more generally $\left(\alpha,\beta \right)$ any pair of complex numbers satisfying the condition
\begin{equation}
  \alpha \alpha^{\boldsymbol{*}}+\beta\beta^{\boldsymbol{*}}=\left\|\alpha\right\|^2 + \left\|\beta\right\|^2=1  
\tag{018}  
\end{equation}
So, the unitary matrix  $\:U\:$ in (012) has  as determinant  the real positive unit $\:\det(U)=+1\:$. Unitary matrices with $\:\det(U)=+1\:$ are called special unitary and  the set  symbol is $\:\mathrm{SU}(n)\:$ in general. So for the unitary matrix  $\:U\:$ in (012) we have  $\:U \in \mathrm{SU}(2)\:$.
2.  Quaternions-Rotations
The unitary matrix representation (016) is simplified if we define the following quantities
 \begin{align}  
  \mathbf{1} & \equiv  I  =
   \begin{bmatrix}         
         1&0\\
         0&1
   \end{bmatrix}
\tag{019a}\\   
  \mathbf{i} & \equiv  -i\sigma_{1}  =
   \begin{bmatrix}         
         0&-i\\
         -i&0
   \end{bmatrix}
\tag{019b}\\    
   \mathbf{j} & \equiv  -i\sigma_{2}  =
    \begin{bmatrix}         
         0&-1\\
         1&0
   \end{bmatrix}
\tag{019c}\\   
   \mathbf{k} & \equiv  -i\sigma_{3}  = 
   \begin{bmatrix}         
         -i&0\\
         0&i
   \end{bmatrix}
\tag{019d} 
\end{align}
with properties
\begin{equation}
   \mathbf{i}^{2}=\mathbf{j}^{2}=\mathbf{k}^{2}=-\mathbf{1}
\tag{020} 
\end{equation}
\begin{equation}
   \mathbf{i} \cdot \mathbf{j}=\mathbf{k}=-\mathbf{j}\cdot \mathbf{i} \quad , \quad \mathbf{j} \cdot \mathbf{k}=\mathbf{i}=-\mathbf{k}\cdot \mathbf{j} \quad , \quad \mathbf{k} \cdot \mathbf{i}=\mathbf{j}=-\mathbf{i}\cdot \mathbf{k}
\tag{021} 
\end{equation}
\begin{equation}
   \mathbf{i} \cdot \mathbf{j}\cdot \mathbf{k}= -\mathbf{1}
\tag{022} 
\end{equation}
Then
\begin{equation}
   U= \left(\cos\frac{\theta}{2}\right)\mathbf{1}+\left(n_{1}\sin\frac{\theta}{2}\right)\mathbf{i}+\left(n_{2}\sin\frac{\theta}{2}\right)\mathbf{j}+\left(n_{3}\sin\frac{\theta}{2}\right)\mathbf{k}
\tag{023} 
\end{equation}
and setting
\begin{equation}
   \cos\frac{\theta}{2}\equiv q_{0}\quad , \quad n_{1}\sin\frac{\theta}{2} \equiv q_{1} \quad , \quad n_{2}\sin\frac{\theta}{2} \equiv q_{2} \quad , \quad n_{3}\sin\frac{\theta}{3} \equiv q_{3}
\tag{024} 
\end{equation}
we have
\begin{equation}
   U= q_{0}\mathbf{1}+ q_{1}\mathbf{i}+q_{2}\mathbf{j}+q_{3}\mathbf{k} \quad , \quad q_{\kappa}\in \mathbb{R}\quad , \quad q_{0}^{2}+q_{1}^{2}+q_{2}^{2}+q_{3}^{2}=1
\tag{025} 
\end{equation}
Inversely, an expression $ U $ defined by (025) represents a rotation with parameters
$ \mathbf{n},\theta $ determined by equations (024).
If in equation (012) we replace $\theta$ by $-\theta$ or exclusively $\mathbf{n}$ by $-\mathbf{n}$, then we have the inverse rotation
\begin{equation}
   U^{-1}= I\cos\frac{\theta}{2}+i(\mathbf{n} \boldsymbol{\cdot}\boldsymbol{\sigma})\sin\frac{\theta}{2}\equiv U^{\boldsymbol{*}}
\tag{026} 
\end{equation}
and so
\begin{equation}
  U^{-1}=U^{\boldsymbol{*}}= q_{0}\mathbf{1}-q_{1}\mathbf{i}-q_{2}\mathbf{j}-q_{3}\mathbf{k} \quad , \quad q_{\kappa}\in \mathbb{R}\quad , \quad q_{0}^{2}+q_{1}^{2}+q_{2}^{2}+q_{3}^{2}=1
\tag{027} 
\end{equation}
Ignoring the condition
\begin{equation}
  q_{0}^{2}+q_{1}^{2}+q_{2}^{2}+q_{3}^{2}=1
\tag{028}  
\end{equation}
we define the so called  quaternions  by 
\begin{equation}
   \boldsymbol{\mathsf{Q}}= q_{0}\mathbf{1}+ q_{1}\mathbf{i}+q_{2}\mathbf{j}+q_{3}\mathbf{k} \quad , \quad q_{\kappa}\in \mathbb{R}
\tag{029}   
\end{equation}
In analogy to the properties of complex numbers
\begin{equation}
 z=a+ib \quad , \quad z^{\boldsymbol{*}}=\text{conjugate of } z =a-ib \quad , \quad \Vert z \Vert ^{2}=zz^{\boldsymbol{*}}=a^{2}+b^{2} 
\tag{030}     
\end{equation}
we define the conjugate of quaternion $\boldsymbol{\mathsf{Q}}$ to be 
\begin{equation}
   \boldsymbol{\mathsf{Q}}^{\boldsymbol{*}}= q_{0}\mathbf{1}- q_{1}\mathbf{i}-q_{2}\mathbf{j}-q_{3}\mathbf{k}
\tag{031}  
\end{equation}
but since, making use of properties (020) and (021), the expression $\boldsymbol{\mathsf{Q}}\boldsymbol{\mathsf{Q}}^{\boldsymbol{*}}$ in not a number but a scalar multiple of the identity quaternion
\begin{equation}
   \boldsymbol{\mathsf{Q}}\boldsymbol{\mathsf{Q}}^{\boldsymbol{*}}= \left( q_{0}\mathbf{1}+q_{1}\mathbf{i}+q_{2}\mathbf{j}+q_{3}\mathbf{k}\right) \left( q_{0}\mathbf{1}- q_{1}\mathbf{i}-q_{2}\mathbf{j}-q_{3}\mathbf{k}\right)=\left( q_{0}^{2}+q_{1}^{2}+q_{2}^{2}+q_{3}^{2}\right)  \mathbf{1} 
\tag{032}    
\end{equation}
we define the norm of quaternion $\boldsymbol{\mathsf{Q}}$ of (029)  to be
\begin{equation}
   \Vert \boldsymbol{\mathsf{Q}} \Vert ^{2}=q_{0}^{2}+q_{1}^{2}+q_{2}^{2}+q_{3}^{2}
\tag{033}   
\end{equation}
As the space of complex numbers 
\begin{equation}
   \mathbb{C} \equiv \lbrace z: z=a+ib \quad a,b \in \mathbb{R}\rbrace 
\tag{034}    
\end{equation} 
is in many respects identical to the 2-dimensional real space $\mathbb{R}^{\boldsymbol{2}}$, so the space of quaternions
\begin{equation}
   \mathcal{Q} \equiv \lbrace \boldsymbol{\mathsf{Q}}:\boldsymbol{\mathsf{Q}}= q_{0}\mathbf{1}+ q_{1}\mathbf{i}+q_{2}\mathbf{j}+q_{3}\mathbf{k} \; , \; q_{\kappa}\in \mathbb{R}\rbrace
\tag{035}  
\end{equation} 
is identical to the 4-dimensional real space $\mathbb{R}^{\boldsymbol{4}}$.
A quaternion of unit norm
\begin{equation}
   \boldsymbol{\mathsf{Q}}= q_{0}\mathbf{1}+ q_{1}\mathbf{i}+q_{2}\mathbf{j}+q_{3}\mathbf{k} \; , \;q_{\kappa}\in \mathbb{R} \; ,\; \Vert \boldsymbol{\mathsf{Q}} \Vert ^{2}=q_{0}^{2}+q_{1}^{2}+q_{2}^{2}+q_{3}^{2}=1
\tag{036}    
\end{equation} 
or any quaternion normalized,$\;\boldsymbol{\mathsf{Q}}/\Vert \boldsymbol{\mathsf{Q}} \Vert\;$, represents a unique rotation in the 3-dimensional real space $\mathbb{R}^{\boldsymbol{3}}$, but inversely to any rotation corresponds a pair  $\; \lbrace\boldsymbol{\mathsf{Q}},-\boldsymbol{\mathsf{Q}}\rbrace\; $, where $\;\boldsymbol{\mathsf{Q}}\;$ is a unit norm quaternion.
Let the quaternions  $\;\boldsymbol{\mathsf{Q}},\boldsymbol{\mathsf{P}} \in \mathcal{Q}$
\begin{equation}
   \boldsymbol{\mathsf{Q}}= q_{0}\mathbf{1}+ q_{1}\mathbf{i}+q_{2}\mathbf{j}+q_{3}\mathbf{k} \quad , \quad \boldsymbol{\mathsf{P}}= p_{0}\mathbf{1}+ p_{1}\mathbf{i}+p_{2}\mathbf{j}+p_{3}\mathbf{k}
\tag{037}     
\end{equation}
Using  properties (020) and 021) their product is
 
\begin{equation}
   \boldsymbol{\mathsf{P}}\boldsymbol{\mathsf{Q}}= \left( p_{0}\mathbf{1}+ p_{1}\mathbf{i}+p_{2}\mathbf{j}+p_{3}\mathbf{k}\right)\left( q_{0}\mathbf{1}+q_{1}\mathbf{i}+q_{2}\mathbf{j}+q_{3}\mathbf{k}\right) = h_{0}\mathbf{1}+h_{1}\mathbf{i}+h_{2}\mathbf{j}+h_{3}\mathbf{k}=\boldsymbol{\mathsf{H}}
\tag{038}     
\end{equation}
where
  \begin{align}
      h_{0} & = q_{0}p_{0}-\left(\mathbf{q}  \boldsymbol{\cdot}       \mathbf{p}\right)
\tag{039a}\\   
    \mathbf{h} & = p_{0}\mathbf{q} +q_{0}\mathbf{p}- \left(\mathbf{q} \boldsymbol{\times}   \mathbf{p}\right)
\tag{039b} 
  \end{align}
and $\;\mathbf{q},\mathbf{p},\mathbf{h} \in \mathbb{R}^{\boldsymbol{3}}\;$ the 3-dimensional real vectors
\begin{equation}
   \mathbf{q}= \left[q_{1},q_{2},q_{3}\right] \quad , \quad \mathbf{p}= \left[p_{1},p_{2},p_{3}\right] \quad , \quad \mathbf{h}= \left[h_{1},h_{2},h_{3}\right]
\tag{040} 
\end{equation}
Note that
\begin{equation}
   \boldsymbol{\mathsf{H}}=\boldsymbol{\mathsf{P}}\boldsymbol{\mathsf{Q}}\Longrightarrow \Vert\boldsymbol{\mathsf{H}}\Vert ^{2}=\Vert\boldsymbol{\mathsf{P}}\Vert ^{2}\Vert\boldsymbol{\mathsf{Q}}\Vert ^{2}
\tag{041}   
\end{equation}
If both quaternions  $\;\boldsymbol{\mathsf{Q}},\boldsymbol{\mathsf{P}}\;$ are of unit norm, 
$\;\Vert\boldsymbol{\mathsf{Q}}\Vert ^{2}=1=\Vert \boldsymbol{\mathsf{P}}\Vert^{2}\;$, then they represent rotations in $\;\mathbb{R}^{\boldsymbol{3}}$ and $\;\boldsymbol{\mathsf{H}}\;$ is of unit norm also,$\;\Vert\boldsymbol{\mathsf{H}}\Vert ^{2}=1\;$, representing their composed rotation. In this case equations (039a) and (039b) are identical to (043a) and (043b) respectively, see 3. Addendum, under the following substitutions
  \begin{align}
     q_{0} & = \cos\frac{\alpha}{2} & \mathbf{q}& = \sin\frac{\alpha}{2}\mathbf{n}_\alpha  
\tag{42a}\\
     p_{0} & = \cos\frac{\beta}{2}  & \mathbf{p}& = \sin\frac{\beta}{2}\mathbf{n}_\beta 
\tag{42b}\\
     h_{0} & = \cos\frac{\phi}{2}   & \mathbf{h}& = \sin\frac{\phi}{2}\mathbf{n}
\tag{42c}
  \end{align}
3.  Addendum

In above Figure it's shown the  rotation $U(\mathbf{n}_\phi,\phi)$, composition of two rotations $U(\mathbf{n}_\alpha,\alpha)$ and $U(\mathbf{n}_\beta,\beta)$  applied in this sequence. Note that this composed rotation is determined by the following equations
\begin{equation}
   \cos\frac{\phi}{2}=\cos\frac{\alpha}{2}\cos\frac{\beta}{2}-\left(\mathbf{n}_\alpha \boldsymbol{\cdot} \mathbf{n}_\beta\right)\sin\frac{\alpha}{2}\sin\frac{\beta}{2}=\cos\frac{\alpha}{2}\cos\frac{\beta}{2}-\cos\omega\sin\frac{\alpha}{2}\sin\frac{\beta}{2}
  \tag{043a}
\end{equation}
\begin{equation}
   \sin\frac{\phi}{2}\ \mathbf{n}_{\phi}= \sin\frac{\alpha}{2}\cos\frac{\beta}{2}\ \mathbf{n}_\alpha+\sin\frac{\beta}{2}\cos\frac{\alpha}{2}\ \mathbf{n}_\beta-\sin\frac{\alpha}{2}\sin\frac{\beta}{2}\left(\mathbf{n}_\alpha  \boldsymbol{\times}  \mathbf{n}_\beta\right)
  \tag{043b}
\end{equation}
(1) See my answer here as user82794  Construction of Pauli Matrices
(2) See my answer here Rotation of a vector